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Abstract. This final report summarizes the work funded under the Grant NAG3-2411 during

the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the

theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical

functionally graded materials/structural components employed in advanced aircraft engines devel-

oped under past NASA-Glenn funding. The completed generalization significantly broadens the

theory's range of applicability through the incorporation of dynamic impact loading capability into

its framework. Thus it makes possible the assessment of the effect of damage due to fuel impurities,

or the presence of submicron-level debris, on the life of functionally graded structural components.

Applications involving advanced turbine blades and structural components for the reusable-launch

vehicle (RLV) currently under development will benefit from the completed work. The theory's

predictive capability is demonstrated through a numerical simulation of a one-dimensional wave

propagation set up by an impulse load in a layered half-plane. Full benefit of the completed gener-

alization of the higher-order theory described in this report will be realized upon the development

of a related computer code.

1. INTRODUCTION

Functionally graded materials (FGMs) are a new generation of composites wherein the microstruc-

tural details are spatially varied through nonuniform distribution of the reinforcement phase(s), by

using reinforcement with different properties, sizes and shapes, as well as by interchanging the roles

of reinforcement and matrix phases in a continuous manner. The result is a microstructure that

produces continuously changing thermal and mechanical properties at the macroscopic or contin-

uum level. This new concept of engineering the material's microstructure allows, for the first time,

to fully integrate both the material and structural considerations into the final design of structural

components.
Most computational strategies for the response of FGMs do not explicitly couple the material's

heterogeneous microstructure with the structural global analysis. Rather, local effective or macro-

scopic properties are first obtained through homogenization based on a chosen micromechanics

scheme, and then used in a global thermomechanical analysis. This often leads to erroneous results

when the temperature gradient is large with respect to the dimension of the inclusion phase, the

characteristic dimension of the inclusion phase is large relative to the global dimensions of the com-

posite, and the number of uniformly or nonuniformly distributed inclusions is relatively small (Ref.
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[1]). As aresult of the limitationsof the uncoupledapproach,a newhigher-ordermicromechanical
theory for FGMs(HOTFGM), that explicitly couplesthe localandglobaleffects,hasbeendevel-
opedin the Cartesiancoordinatesystemfor applicationsinvolvingrectangularplate-likestructural
componentsunderNASA funding(Refs. [2-19]).Thedevelopmentof the theoryhasbeenjustified
by comparisonwith the resultsobtainedusingthe standardmicromechanicsapproachwhich ne-
glectsthemicro-macrostructuralcouplingeffects(Refs.[4,7]).Summariesof significantresultsand
accomplishmentsgeneratedusingthis theory,andthe utility of functionallygradedmicrostructures
in enhancingthe performanceof plate-likestructural componentssubjectedto through-thickness
thermalgradientshavebeenoutlinedin Refs.[9,18,19,20].

In orderto exploit thealready-provenpredictivecapabilitiesof HOTFGMto thefullest in meet-
ing the challengesand needsof the aerospaceand aircraftengineindustriesfor a greaternumber
of stronger,lighter andmoredurablestructuralcomponents,newversionsof HOTFGM havebeen
recentlydevelopedfor applicationsinvolvingcylindricalbodiesof revolution.The generalizationof
HOTFGM to problemsinvolvingcylindricMgeometriesmakespossiblethe analysis,optimization
anddesignof functionallygradedstructural components,suchasrotor disks,combustorliningsand
blisk blades,for usein advancedaircraft engines.Thusfar, twoversionsof the cylindrical higher-
ordertheoryhavebeendeveloped.The quasione-dimensionalversionenablesanalysis,designand
optimizationof cylindricalbodiesof revolutionsubjectedto axisymmetricthermomechanicalload-
ing that are reinforcedby either continuousor discontinuousfiberswith variablespacingin the
radial direction (Ref. [21]). The recentlycompleteddevelopmentof the two-dimensionalversion,
which alsoadmitsthe presenceof coolingchannels,enablesanalysis,designand optimization of
cylindricalbodiesof revolutionwith functionallygradedmicrostructuresin the radial andcircum-
ferentialdirections(Ref' [22]). The thermomechanicalloadinginvolvesarbitrary distribution of
surfacetractionsand temperaturesappliedto the boundariesof fully or partially enclosedcylin-
dricalbodiesof revolutionin the planethat containsthe functionallygradedmicrostructure.This
significantgeneralizationprovidesanalysisanddesigncapabilitiesfor a wider rangeof structural
componentsemployedin advancedaircraft engines.

The utility of the developedCartesianandcylindricalversionsof the higher-ordertheory has
beendemonstratedthroughapplicationsto the followingtechnologicallyimportant problems:

....... e Investigat_io_n.ofthe effectof microstructureonthermal andstressfieldsin MMC plates:and
cylinders

• Investigationof the useof functionallygradedarchitecturesin reducingedgeeffectsin MMC
plates

• Optimizationof functionallygradedmicrostructuresin MMC platesandcylinders

• DevelopmentOfguidelinesfor the designof specialcoatingsin exhaustnozzleapplications
underNASA/Pratt gzWhitneySpaceAct Agreement

• Investigationof the microstructuraleffectsin functionallygradedTBCs

• Effectof bond coat interfacialroughness amd oxide film thickness on the inelastic response

of plasma-sprayed TBCs

• Effect of graded bond coats on the inelastic response of plasma-sprayed TBCs

NASA/CR--2001-210967 2



While the recentlycompletedcylindricalhigher-ordertheorycontainstransientthermalloading
capability,the mechanicalloadingcapabilitydoesnot includedynamiceffectsappearingin the
governingforceequilibriumdifferentialequations.This, in turn, excludesthe possibilityof gaging
the effectof impact loading(by fuel impuritiesor submicrondebris,for instance)on damageevo-
lution in suchapplicationsasadvanced,functionallygradedthermalbarriercoatings,for instance.
Theobjectiveof the worksummarizedin this report, therefore,wasto extendthetwo-dimensional
higher-ordertheoryfor cylindricalfunctionallygradedstructuralcomponentsby incorporatingdy-
namicimpact loadingcapability.This extensionfundedunderthe Grant NAG3-24il during the
04/05/2000-04/04/2001periodmakespossibletheassessmentof theeffectof foreignobjectimpact
on the potentialfor damageevolutionin advancedturbinebladecoatings.It complementscurrent
nation-wideeffortsby a numberof governmentagenciesto developa new generationof turbine
bladecoatingscapableof operatinglongerin low-costfuel environmentscontainingdifferenttypes
of impurities. As the impactproblemalsoplaysan important role in a numberof other techno-
logicallyimportant applicationsthat areimportant to thenation'ssecurityinterests(gradedbody
armour,for instance),the completedworksignificantlybroadensthe rangeof technologicallyim-
portantapplicationsof the cylindricalhigher-ordertheory.However,thecompletedwork is limited
to the developmentof the theoreticalframeworkthat enablesmodelingof impact-inducedwave
propagationin the radial and circumferentialdirectionsof functionallygradedcylindrical struc-
tural components.Therefore,the descriptionof this theoreticaldevelopmentformsthe major part
of this report. Full utilization of the impact-loadingcapabilityrequiresthe developmentof the
relatedcomputercodeandits validation. Thesetasksremainto becompletedunderfuture fund-
ing. To demonstratethe potentialof the developedtheoreticalframework,a smallcomputercode
wasdevelopedto simulateone-dimensionalwavepropagationdueto impulseloadingin a layered
half-planeasa specialcaseof the generaltwo-dimensionaltheory,and the numericalpredictions
werevalidatedthrough comparisonwith anexactanalyticalsolution.Theseresultsaredescribed
at the endof the report.

2. MODEL DESCRIPTION

The presentFGM theoryis basedon the geometricmodelof aheterogeneouscompositeoccupying
the regionR0 < r < R1, 0 < _ < O, ] z [< c_, where r,O,z are cylindrical coordinates, see Fig. 1.

The composite is reinforced in the r - 0 plane by an arbitrary distribution of infinitely long fibers

oriented along the axial z-axis, or by finite-length inclusions that are arranged in a periodic manner

in the axial direction. The microstructure of the heterogeneous composite is discretized into Np

and Nq cells in the intervals tto < r < R1 and 0 <_ 0 < 0, respectively. As in the Cartesian version

of the higher-order theory (see Ref. [19], for instance), the generic cell (p, q, s) used to construct

the composite consists of eight subcells designated by the triplet (a/_7), where each index a, fl,7

takes on the value 1 or 2 to indicate the relative position of the given subcell along the r-, 0-, and

z- axis, respectively. The indices p and q, whose ranges are p = 1, 2, ..., Np and q = 1, 2, ..., Nq,

identify the generic cell in the r - 0 plane and thus remain constant along the axial z axis. For the

axial direction, the corresponding index s having an infinite range is introduced. The dimensions

of the generic cell along the periodic axial direction, 11, I2, are fixed for the given configuration;

whereas the dimensions along the r- and 0- axes or the FG directions, tiP) z(P) and _q), _q) can_'I _ _2 ,

vary in an arbitrary fashion such that D - v'NP /,¢(P)-- A._p=lk_l +d2 (p)) and O = _qlVq=l(_q)Je-_(2q)).

Given the applied thermomechanieal loading in the (r - 0)-plane, an approximate solution for
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thetemperatureandthetime-dependentdisplacementfieldsis constructedbasedon thevolumetric
averagingof the fieldequationstogetherwith the impositionof boundaryandcontinuityconditions
in the averagesensebetweenthe subvolumesusedto characterizethe material'smicrostructure.
This is accomplishedby approximatingthe temperaturefield in eachsubcelIof the genericcell
usinga quadraticexpansionin the localcoordinates(_(a),_(Z)2(_))centeredat thesubcelt'scenter.
Similarly,the time-dependentdisplacementfieldin tile FGdirectionin eachsubcel!isapproximated
using a quadraticexpansionin local coordinateswithin the subcell. The displacementfield in
the periodic axial direction,on the other hand, is approximatedusinglinear expansionin local
coordinatesto reflecttheperiodiccharacterof tile composite'smicrostructurealongthe z- axis. A

higher order representation of the temperature and displacement fields is necessary to capture the

local effects created by the thermomechanical field gradients, the microstructure of the composite,
and the finite dimensions in the FG direction.

The unknown coefficients associated with each term in the temperature field expansion are then

obtained by constructing a system of equations that satisfies the requirements that the steady state

heat equation is satisfied in a Volumetric sense, and the thermal and heat flux continuity conditions

within a given cell, as well as between a given cell and adjacent cells, are imposed in an average

sense, together with the applied boundary conditions.

Due to the presence of the inertia effects in the governing mechanical equations, on the other

hand, the second time derivatives of the unknown time-dependent coefficients associated with each

term in the displacement field expansion are obtained in this case by constructing a system of equa-

tions that satisfies the requirements that the elastodynamic equations are satisfied in a volumetric

sense, and the displacement and traction vectors continuity conditions within a given cell, as well as

between a given cell and adjacent cells, are imposed in an average sense, together with the applied

time-dependent boundary conditions. This system of second order ordinary differential equations

is solved in a stepwise manner in time by employing an approximate explicit scheme. Once these

coefficients have been determined at the current time t, all field variables can be readily established.

This procedure is continued until the specified final time is reached.

3. THERMAL ANALYSIS

Let the composite be subjected to the steady-state temperature distributions TT(O) on the top

surface (r ----R1), TB(O) on the bottom surface (r -- Ro), TL(r) on the left surface (0 = 0), and

TR(r) on the right surface (0 = O). Under these circumstances, the heat flux field in the material

occupying the subcell (a_'f) of the (iv, q, s)th cell must satisfy the steady state heat equation in

cylindrical coordinates (r, 0, z). This equation is given by

Oq(_#_) 1 _(a#_) + _ + 0 (1)
0e(,_----_+ R(o,#':,) + _(,_)q" 09(8) 0_(_) -

where R(_#'_) is the distance of the (_fl_,) subcell's center from the origin, _7(#) = R(_#'Y)0 (_), and

q(a#'0 0, z) are the components of the heat flux vector in the subcell. These components(i=r,
are derived from the temperature T (_#'0 in the subcetl according to the Fourier law:

,_#w0T (_#'v)
q('_#_) =-k(_ ), O_(a ) (2)
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(3)

= 0T (4)

where k__#_) denote the thermal conductivities of the material in the subceil.

As in the analysis of the steady-state heat equation in Cartesian coordinates, the temperature

field in the subcell is expanded quadratically in terms of the local coordinates (_=(_),/7(8), _(v)) as

follows

T(_#_) _ m(_#;) ;(_)rv(_#;) _(#)T(_#_)
-- _(ooo) +" I(100) +_ (olo)

i( 3_(_)2 _ ) (200) + (3Y(#)2 _'r(_#v) lv_'r(_#_)+ 2 4 )'(o2o) + ( 32(')')2-- 4 J" (oo2) (5)

= _(_#_) which is the volume-averaged temperaturewhere h (q) R('_#'_)O(q). The microvariables "(000) ,

within the subcelt, and T (_#_) [lm(lmn) x , , n = 0, l, or 2 with l + m + n <_ 2) are unknown coefficients
that are determined in the manner described below. It should be noted that the temperature

expansion given in eqn (5) does not contain a linear term in the local coordinates _,(_). This follows

directly from the assumed periodicity in the axial z-direction and symmetry with respect to the

lines 5 ('r) = 0 for "y = 1 and 2.
...... (_#_) (_#_)Given the sm unknown quantities associated with each subcell (i e T. , . ,T ) and• • (oo0) "- (0o2)

eight subcells within each generic cell, 48NpNq unknown quantities must be determined for a

composite with with Np and Nq subcells containing arbitrary specified materials. These quantities
are determined by first satisfying the heat conduction equation, as well as the first and second

moment of this equation in each subcell, in a volumetric sense in view of the above temperature

field approximation. Subsequently, continuity of heat flux and temperature is imposed in an average

sense at the interfaces separating adjacent subcells as well as neighboring cells. Fulfillment of these

field equations and continuity conditions together with the imposed thermal boundary conditions at

the top, bottom, left and right surfaces of the composite provides the necessary 48NpNq equations

for the 48NpNq unknown coefficients in the temperature field expansion. We begin the outline of

steps to generate the required 48NpNq equations by first considering an arbitrary (p, q, s)th cell

in the interior of the composite (i.e., p = 2, ..., Np - 1 and q = 2, ..., Nq - 1). This produces

48(Np - 2)(Nq - 2) equations• The additional equations are obtained by considering the boundary

cells (i.e., p = 1, Np and q = 1,Nq). For these cells, most of the preceding relations also hold,

with the exception of some of the interfacial continuity conditions between adjacent cells that are

replaced by the specified boundary conditions.

In the course of satisfying the steady-state heat equation in a volumetric sense, it is convenient

to define the following flux quantities:

w{U,m,n)J = _ (p,q,,) J_d_)/2 J_h(#q)/2 J_l_/2 (g(_))t(f_(#))m(5(_))nq_#_)d?(a)df/(#)d2(_)(
(6)

" (_f_ )

where i = r,O,z; l,m,n = 0, 1, or 2 with I + m + n < 2 and v (p'q'_) : "_(_)_(q)_ being the volume

of the subcell. For l = m = n = O, _(o,o,o) is the average value of the heat flux component _,
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in the subcell,whereasfor othervaluesof (1,m, n) this equation defines higher order heat fluxes.

These flux quantities can be evaluated explicitly in terms of the coefficients T(_f: ) by performing

the required volume integration. This yields the following nonvanishing zeroth-_-"_-'andfirst-order heat

fluxes in terms of the unknown coefficients in the temperature field expansion

Q(o_) _k(_-jT(_Z'_)_(o,o,o)= ,- 0oo) (7)

Q(Oa-y) v(_,_),-r(,_,_-y)
o(o,o,o)= -'°o _(mo) (8)

_(v)2
r)(_Z'r) _v(_Z_) _ _(_) (9)
"_rO,o,o)= '_ 4 _(2oo)

h(q) 2

_(_) -z-(_)'°*- _(_) (I0)wo(o,l,o) = No 4 _(o20)

12
{)(_p_) _(_) __(a_) (11)
"_(0,0,1) = -'-_ _-'(oo2)

Satisfaction of the zeroth, first, and second moment of the steady-state heat equation (1) results

into the following eight relationships among the first-order heat fluxes n(aB_) in the differentW+(t,m,n)
(C_/37) subcells of the (p, q, s)th cell, after some involved algebraic manipulations (see Ref. [12] for

a complete derivation in Cartesian coordinates)

12 r_(_) 12n(_ ) 12n(_ ) 1 r_(_) ](v,q,_) (12)
_'a `'gr(l'0'0) + h_'_f(°,l,°) + 12 '_z(0,0,1) + _(--'_-_"gr(0,0,0)l ----0

where the triplet (a_7) assumes all permutations of the integers 1 and 2.

The continuity of the heat fluxes at the subcell interfaces and between individual cells in the

radial direction, imposed in an average sense, is ensured by

[12,_(i_x) l(p,q,s) _ ,12_(2/3-r) l(v,q,s) a r12,_(2p_) l(p_l,q,s)
"_2t2_,,.+(1,o,o)j = -'_lt_,-(,,o,o)J - L'm!._'_,+(l,o,o)J

- ,.-,(2_-y) 1 _(2X_'r) l(p,q,s)
+ z_t_(o,o,o) R(f_)_(t,0,o)+

+r+(2t++) 1 r+(2Z+_) +(p-l,+,+) (13)
-- z,4 t_r(O,O,O) R(_-_7)-_r(1,0,0)J

1 r_(lZ_) t(p,q,s)
R(i-Z_)'w_(i,o,o)_

- ,_,(2Z-r) 1 _(2_-r) ]O_,q,s)
= _:5 [_r(0,0,0) i_(2_,7) "_ r (1,0,0) J

, r,(2D0') 1 /-}(2_'_) t(P--l,q,s)

+ _6[_4r(0,0,0) R(2flT) '_r(1,0,0)J

- z,Tt_,.O,o,o)+ + _st_w,-O,o,o)_

The coefficients Z_, i = 1, ._8, in eqns (13)-(14) are defined as follows

v(p,q,s ) + (p-l,q,s)-(2_) 2Zl 2Z2

(2_) Z2-- Z3 -- d_p) Z4 - d_p_ 0Zi = 2v(V,_,_) 9vO_,q,_)
(1_) " (l_)

(14)

(15)
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_ d_p) Z2

d_P) 2 2 2

The continuity of the heat fluxes at the subcell interfaces and between individual cells in the

0-direction, imposed in an average sense, is ensured by

12Q(a17) l(p,q,s) [_Q_2,71)o)](v,q,s ) vr12_(a27)](p,q-l,s)o(o,l,o; = -Y1 -  2  wo(o,l,o)J

y,_[f)(a2"r) l(p,q,s) xlrr_(a2_) ](p,q-l,s)
-F o t'_ o(o,o,o) J - _ 4 L_¢0(O,0,0) j

(17)

[/--_(a1")') ](p,q,s)
We(o,o,o)J

v r,,_(a27) l(p,q,s) -4- v r,,_(a2'7) ](p,q-l,s)
-.-= .t 5 !._rO(O,O,O)j z 6 [_e(o,o,o)J

yTr12o(a27) ](p,q,s) . ,12.-.(a2-y) l(p,q-l,s)

-- Y8[_222_0(0,1,0) j• th2,_o(o,l,o)j +

The coefficients Y_, i = 1, ...8, in eqns (17)-(18) are defined as follows

(18)

v(V,q,s)
(_27)

}I1 =--2v(p,q,s )

_j(p,q-l,s)(_,2_) 2Y_ 2Y2

r2 = 2v ,q,8) = hF )
(m-_)

(19)

Y5- h_q)Y1 Y6 = ]'z_q)Y4 Y7- h_q)YI Y8-_- _h_q)'_/'2 (20)

h_q) 2 2 2

Finally, the continuity of the heat fluxes at the subcell interfaces in the z-direction, imposed in

an average sense, is ensured by

1D(afll) -1- 1 ,,3(,_f_2) l(v,q,s) = 0 (21)
/l"_z(O,O,1) _z(O,Oj)J

The above equations (13)-(14), (17)-(18) and (21), provide us with 20 additional relations

among the zeroth- and first-order heat fluxes. These 28 relations can be expressed in terms of the

unknown coefficients _(l-_,,) by making use of the expressions for heat fluxes given in terms of these

coefficients in eqns (7)-(11).

An additional set of 20 equations that are necessary to determine the unknown coefficients in

the temperature field expansion is subsequently generated by the thermal continuity conditions

imposed on an average basis at each subcell and cell interface. Imposing the thermal continuity at
each subcell interface and between individual cells in the r-direction we obtain

.42
422dl

T_g_ (v'q's) = 0 (22)
T(2f3"_) 1r,r,(1/37) T(1¢'/) ) __ m(2ft3 ') d2 T(2/3_f)

t_(0o0) +-_- (100) + 4 -(0o0) + 2-000) -_--(20o) J

2 2
rq_(2f_) d2 T(2_7) d2 ,-p(2f/V)] (p,q,s) [T(lf/v) dl T(lZT) dt T(lZT)I (p+Lq,,) (23)
t_-(ooo) + _- (loo) + -g-'(2oo) J = t-(ooo) - _- (_oo) + _- (200) J

In the 0-direction we have

m a17) _-_T_;10_ ) h12T(al'7)m(_2"y)h2 m(_27)h2T(a2"t)l(p,q,s )_(000) q- q- 4 "_(020) - _(000) nu _-'_(010) - "-4 (020) J -_- 0
(24)

9NAS A/CR--2001-. 10967 7



1.2 2
r_T((_2";.)l(p,q,8) [T(alT) q.(alT) h l T(_lT)l(p,q+l,_)

t_(°°°)r"r'(a2_')+ h2T(°_2")')2(OLO)+ 4 (020) J = t_(°°°) 2 "(OLO) + _ (020) J (25)

The thermal continuity conditions in the periodic z-direction, imposed in the average sense,

provide
12r_r(_Zl) 12T(_I) _ ,r(_Z2) _ _rr(_2)l(P,q,')

t_(000) + _(002) _(000) 4 _(002) J = 0 (26)

These temperature continuity conditions, eqns (22)-(26), comprise the required additional 20 rela-
tions.

The steady-state heat equations (12) together with the heat flux, (13)-(14), (17)-(18), and

thermal continuity, (22)-(26), equations form altogether 48 linear algebraic equations that govern

the 48 field variables T_dn_ ) in the eight subcells (c_fl7) of the interior cell (p, q, s),p = 2, ...Np- i, q =
2, ..., Nq - 1. For the boundary cells p = 1, Np and q = 1, Nq, a different treatment must be applied.

For p = 1, the flux continuity conditions (13)-(14) between a given cell and the preceding one are

not applicable. They are replaced by the condition that the heat flux at the interface between

subcells (lfl_,) and (2_')') of cell (1, q, s) is continuous as well as the applied temperature relation

at the surface r = Ro. For the cell p = Np, the previous equations are applicable except for
those which express continuity between this cell and the next one, eqn (23). These equations are

replaced by the boundary conditions that are applied at the surface r = R1. In the case in which

the temperature is prescribed, the boundary conditions at the bottom and top surfaces are

T (1Xg"_)t(l'q's)= TB(O) f(1) = _d_1)/2 (27)

T(2z )I(N"o")=Tr(O) = d_g,)/2 (28)

where q = 1, ..., Nq.

Similarly, continuity conditions (17)-(18) that are not applicable at 0 = 0 at cell (p, 1, s) are

replaced by the continuity of heat flux at the interfaces between the subcells of this cell, and by

the applied loading at the surface 0 = 0. The temperature continuity conditions between a cell and

the next one in the 0-direction, eqn (25), which are not applicable at cell (p, Nq, s) are replaced by

the applied loading conditions at 0 = O. In the case in which the temperature is prescribed, the

boundary conditions at the left and right surfaces are

T(_IT) ](p,l,,)= TL(r) z2(1) = -h_1)/2 (29)

T (_2;) TR( ) ¢2) _-- h_Nq)/2 (30)

where p = 1, ..., Np,
The governing equations at the interior and boundary cells form a system of 48NpNq linear

in the unknowns T(_.P_ ). Their solution determines the temperature distributionalgebraic equations

within the FG composite that is subjected to the specified boundary conditions. The final form of

this system of equations is symbolically expressed as

_T = t (31)

where the structural thermal conductivity matrix _ contains information on the geometry and ther-

mal conductivities of the individual subcells ((_7) in the NpNq cells spanning the r and 0 directions;
the thermal coefficient vector T contains the unknown coefficients that describe the thermal field in

p..p(111) T(222) 1 where T_B_,) [T(ooo),T(mo),T(olo),T(200 ) T(020), T(oo2)]_'Y) ;each subcelI, i.e., T = t_n , ---, _-N, NqJ = '
and the thermal force vector t contains information on the thermal boundary conditions.

NAS A/CR--2001 -210967 8



4. MECHANICAL ANALYSIS

4.1. Basic Mechanical Equations. The mechanical dynamic equations of motion in cylin-

drical coordinates (r, 0, z) must be fnlfilled within each (aflT) subcell of the (p, q, s)th cell. These

equations are given by

Oa(_#'_)O_(_)+ _claor'_(°#V)cg_(#)+ --cgv(_#v)O#('_)+ R( °_)1+ _(a) [ a$_ fl'_) - a_ _)] = p (a#v)o2u('az't)Ot2 (32)

0_(_)

_2o,(_#_)
0cr_#_) _.,(o#_) 2 _(_#_) p(_#_) _" _0 (33)

0_(_) + V_'z° + =Oq_.(v ) R(a_7) +/;(a) _re Ot 2

0,_(_#_) _ (_#-y) n2u(O#'y)
_Oz Oaz_ 1 a(_#7) = p(a#7) _ z (34)
0_(#) + " O2('r_ + R (mflv) + _(_) rz Ot2

(a#v) o (_#_) u!_#_) -(_Z'_) (i, j = r, 0, z) are thewhere _ ,_0 , are the subcell displacement components, _j

stress components, p(a#_) is the mass density and t is time.

The components of the stress tensor, assuming that the material occupying the subcell (a_)

of the (p, q, s)th cell is either elastic orthotropic or inelastic isotropic, are given by

o.(,:,,#_) ,.,(_#n,)r_.(,_#z) s(_n_,)-, (_#_) (_#_) (35)
ij ---- "ijkl tCkl -- ekl j -- Fij T

where i, j, k, l = r, 0, z, c (_'_) -(_Z'Y) and 1(o#_)i3k_ are the elements of the elastic stiffness tensor, eij _i3 are

the total strain and the inelastic strain components, T (_'_) is the temperature, and ri(] _) are the

elements of the thermal stress tensor which is the product of stiffness and the thermal expansion

coefficients tensors. In this report, we consider either elastic orthotropic materials or inelastic

materials which are isotropie in both elastic and inelastic domains. Hence, the above constitutive

relations (35) reduce to

0.(c_8_,) ...(._f13') _(a,O'7) (c_fl3,) I (o_,0-7) T(o_'7)
ij "ijkl Ckl -- 2_t Eij= -- Uij

(36)

where/_(_#'_) is the elastic shear modulus of the material filling the given subcell (aflT), and the
(_#'_) (_#_)

qT(_#_) stands for the thermal contribution F_ Tterm

4.2. Traction continuity conditions. The continuity of tractions between adjacent subcells

within the generic cell (p, q, s) is fulfilled by requiring

O.(rl/f_,_) l(p,q,s ) __ _(2_-'/) (p,q,s)

_

O.(c_f_t) (p,q,s) __ _(o_f_2) (p,q,s)

zi ,_(1)=/1/2- U zi 5(2)=--t2/2

(37)

(38)

(39)

where i = r, 0, z.
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In addition to the abovecontinuity conditionswithin the genericcell, the traction continuity
at the interfacesbetweenneighboringcellsarefulfilledby satisfying

O.(rlifiT) (p+l,q,s) __ _(2fi7) (p,q,s) (40)

a(_l_) (p,q+l,8) _ ..(_2_) (p,q,s) (41)
¢1)

O.((lfT1) (p,q,s+l) --G._7_2)(p,q,s) (42)
z4 2(1)=_tl/2-- " 2(2)=12/2

4.3. Displacement Continuity Conditions. Similar to the traction continuity conditions

described above, the following displacement continuity conditions must be satisfied at the interfaces

within a generic cell (p, q, s) and its neighboring cells.

u (lz'_) I(p'q's) -u (2z_) I(p'q's) (43)

u(_l-_) iCp,q,.) _ u(_) (p,q,s) (44)

U(C_f31) (p,q,s) __ U(af_2) (p,q,s) (45)
_(1)=ll/2-- 2+(2)=_12/2

where u (_z_) (_ (_Z_) _ (as_) u(_))= t_ , _0 , denotes the displacement vector in subcell (c_ftT) , and

u(ZZ-_) (p+l,q,_) _ u(2fl_) ](v,q,_) (46)

u(_l_) (p,q+l,_) u (_2_) [(P'q'_) (47)
= #(2)=h(I)/2

O_,q,_+l) _ u(_) (_,q,8) (48)U (_fll) _(i)=_i_/2-- _(2)=12/2

4.4. Boundary Conditions. The final set of conditions that the solution for the displacement

field must satisfy are the boundary conditions at the top and bottom, and left and right surfaces.

For example, the tractions in cells (1,q,s) at the bottom surface r -- R0 must be equal to the

applied time-dependent :surface loads,:

(r(lS_-_) (1,q,_)
_ e(')=-d{')/2-- fs_ (0, t)

(49)

_o eC,)=_d[,)l 2- f.o(O, t) (50)

where q = 1, ..., Nq, and fu_(O, t), fBo(O, t) specify the form of these time-dependent loading func-

tions. At the top surface r = R_

= fT (O,t) (51)
rr _(2)=d_N_) /2

cr(2t_,_) (N_,q>_) _
_o e(_)=d_N.)/2-- fro(O, t) (52)
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whereq = 1,..., Nq.

Similarly, the tractions in cells (p, 1, s) at the left surface 0 = 0 must be equal to the applied

time-dependent surface loads,

o_(c_1_/) (p,l,s)
0r Ar(r,t) (53)

ff_;l"y) (p,l,s)_(1)=_h_1)/2-- fLo(r,t) (54)

where p = 1,...,Np. Similar boundary conditions hold at the right surface 0 = @. In the case of

prescribed time-dependent displacements (say), they are:

u(_l_) 0_,Nq,s) _ t) (55)

u(_l_) (p,Yq,s) _ fRo(r, t)

where the time-dependent loading functions are denoted by ft_r(r, t) and fRo(r, t).

(56)

4.5. Mechanical Field Expansion. The time-dependent displacement components is repre-

sented in each subcell by a quadratic expansion in the local coordinates _(_), _(_), 2 (v) as follows:

u(_) = _'" 1(000) -l- - "" l(lO0) + "Y 1(010)

) 1(2o0) + _ 4 J" 1(o2o) + - 4 J" 1(002)

u_°',8_) _ t_fl,_.e'y) ;(o,)w-(_.e_') _(p)w-(_,o;)- "" 2(000)+" "" 2(loo) + _' "' 2(olo)

-I- _(3P (a)2 4 '"2(200) -F _ 4 _''2(020) + ( 32(v)2 _ 12 2(002) (5s)

u (_) = W (_) _(v)w (_n_) (59)3(000) -+- _ '" 3(001)

W(_'_)where the unknown coefficients _(tm_)(t) (i = 1,2,3), which depend on time, are determined
from the fulfillment of the governing equations, the interracial traction and displacement continuity

conditions, and the applied loading conditions. Note that there are 112 unknowns in eqns (57)-(59)
which necessitates the establishment of 112 relations for the determination of these unknowns.

It should be noted that the z- component of the displacement field, eqn (59), does not contain

linear terms in the locM coordinates P(_) and _(t_). This follows from the assumed periodicity in

the axial direction and symmetry with respect to _(v) = 0 (7 - 1, 2). Further, the presence of the

constant term W(_0fl0_l in eqn (59), which represents subcell center axial displacement, produces(
uniform composite strain _=_ upon application of a partial homogenization scheme in the periodic

direction described in Ref. [5]. This partial homogenization, which couples the present higher order

theory and an RVE-based theory, leads to an overall behavior of a composite, functionally graded

in the r and 0 directions, which can be described as a generalized plane strain in the periodic axial
direction.
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In the perfectlyelasticcase,the abovequadraticdisplacementexpansions(57)-(59)produce
linearvariationsin strainsand stressesat eachpoint within a givensubcell. In the presenceof
inelasticeffects,however,a linear strain field generatedby the aboveexpansiondoesnot imply
the linearity of the stressfield due to the path-dependentdeformation. Thus the displacement
field microvariablesmust dependimplicitly on the plastic strain distributions,giving rise to a
higher-orderstressfield than the linearstrain field generatedfrom the assumeddisplacementfield
representation.In the presenceof inelasticeffects,this higher-orderstressfield is representedby
a higherorderLegendrepolynomialexpansionin the localcoordinates.Therefore,the strain field
generatedfrom the assumeddisplacementfield, and the resultingmechanicaland thermal stress
fields,mustbeexpressedin termsof Legendrepolynomialsas

_ C_

e(_fl_) * e(_fi "_) /3rr(_hp. cp(_)_p. _,*('Y)_, = E E E (60)1titan ij(l,m,n) tkbr ] mkSO ] nkbz /
l=0 rn=O n=0

oo oo

_(,:,_'v) , _(,:,_v) p, (/-(,_)._p._ (_-_)) p,_(((-y)) (61)=E E ,
/=0 m=0 n=0

OO CX)

A T(_-¢) ,. _*(a)_D rr(0)_p, r/_(_)h (62)

l=O m=O n=0

where i,j = r, 0, z, Atrnn = v/(2/+ 1)(2m + 1)(2n + 1), and the nondimensionalized variables _z's

defined in the interval -1 < (i < 1, are given in terms of the local subcell coordinates as _(_) =

_(a)/(d_/2), ((Z)= flC_)/(hz/2), _(v) = 2('Y)/(l._/2).
For the given displacement field representation the upper limits on the summation in the strain

expansion (60) becomes 1; while for a quadratic temperature distribution, the upper limits in the

thermal stress expansion (62) become 2. Alternatively, the upper limits on the summations in the

stress expansion (61) are chosen so that an accurate representation of the stress fields is obtained

within each subcell, which depends on the amount of plastic flow. The coefficients e (azv) "-(aZv)ij(L_,n) " ii(t,_,n)

TT(_) in the above expansions are determined as described below.
ij(l,rn,n)

The strain coefficients e (°_fl'Y)ij(l,rn,n) are explicitly determined in terms of the displacement field mi-
e(aflv) T_r(aflT)crovariables using orthogonal properties of Legendre polynomials. For example _(o,0,0) = vvl(x00)'

The complete set of nonzero strain coefficients is given in the Appendix.
rT ( a_3"t )Similarly, the thermal stress coefficients ij(l,m,n) ca32 be expressed in terms of the temperature

, T(al_) _(a/gV) _(-flV)
field mierovariables T_l_ ). For example "r fro,o,0) = 1,_ 1(ooo) . The complete set of nonzero
thermal stress coefficients is also given in the Appendix.

• r (_v) areThe stress coefficmnts ..q n" expressed in terms of strain coefficients, the thermal stress

coefficients, and the unknown inelastic strain distributions by first substituting the Legendre poly-

, _(_#v) and a T(az'r) into the constitutive equations (36) and thennomial representations for Q(_Zv) °iJ ,

utilizing the orthogonality of Legendre polynomials. This yields

_-(_fi_) = c(azv) e(azv) _ TT(a#7) _ R(aflv)
ij(l,rn,n) ijko ko(t,m,n) ij(l,ra,n) ij(l,rn,n)

(63)

The _j(t,rn,n) terms depend on the inelastic strain distributions calculated in the following
manner:
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R(a#_) At'_/?/_f_-z(a#'y),',r_(,_)_r_,_(#)_p_p('_)_dZ-(a)d/-(#)dr('Y)ij(l,m,n) = #((a_'_) T 1 1 1 _ij rl_'r )Z-m_o ] nk_z ) _r _8 '_z
(64)

4.6. Stress Moments. Let us define the following stress quantities in subcell (a_'y) of cell

_ij(l,m,n)J = v(p,q,s-'----_ j_d(ap)/2 j_h(q)/2 j_l.t/2

where i, j = r, 0, z. Note that, in particular, the zero-order quantities "ij(o,o,o) represent the average
stresses in the subcell.

Explicit evaluation of eqn (65) fields the following expressions for the normal stress quantities

(superscripts (p, q, s) have been omitted)

r(0,0,0) : "ql "" 1(100) + t'* 2(010) + --

_ F(_#'_),-r('_#'_) r_(,_,)
r_ _(000) - _rr(o,0,0)

¢(_#_) S(_)
with similar expressions for _oo(o,o,o) and zz(O,O,0)"

R(afl_) "" I(OOO)]-[- '-'13 "' 3(001)

rr(1,0,0) -- _-_Ii " I(200) + 12R(a#_) _12 "" 1(100)

÷

_2 -(_#_)

_(2,o,o) = T_(o,o,o) + T__', 1(2oo) -,-_ _(_00) _ - _(%0,0)_

h 2 h 2 (_#_)

_rr(O,2,0) -- -_L_rr(O,O,O) ÷ ]"OkR(-------_ 1(020) rr (020) ] "_*%r(O,2,0)J

_(afl-_) 12_[_(a#_) 12 (afl-_)
'-'rr(O,O,2) : -i'2t"'rr(O,O,O) ÷ TOk _(---'_-_ 1(002) rr "_(002) ) "_'_rr(0,0,2)]

with similar expressions for the other components.
Similarly, the explicit expressions for the shear stress quantities are

(66)

(67)

(68)

(69)

(70)

(71)
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S(_'_) = c(_&_)rW(<'s3.y) u/-(_-D
rg(0,0,0) !." 2(100) q- " 1(010)

2

_re(1,o,o)- _-_44 t,, 2(2ool

2
S((,Z-y) _ hE c(<_Z-r)rw:(_iZ-_)

re(O,l,O)- _- 44 L 1(o2ol

1 Tzz((,#-v)]_ R(_$._)
R(<_#v) '" 2(ooo)J ro(o,o,o)

1 _;[;((_7)]_ d(_ R(a/7-r)
3R((,_v) "" 2(loo)J _-_ _0(1,0,0)

1 _/i/.(_7)]_ hfl R(a/7.y)
3R(_STv)"" 2(OlO)J _ r9(O,l,O)

S(o_v) _d2ar¢(a_-r) d_ ,.(op._)w(a&r) 2 _,(a_v) ]

e(2,0,0) -- ]-_ t_'re(o,o,o) 10R(a_) _'44 "" 2(200) v_" _ro(2,0,0)J

S.r(_n_,) h,_r.¢,(_,_) h_ ,..,(<:,,,o>),x,,.(_n,.,,,) 2 #._.n,-,,) 1
o(o,2,o)= -_ L_'re(o,o,o)- 10R(a_-_) <-44 "" 2(020)- _" _o(o,2,0)J

2 2

_.0(0,0,2)= 12c ra(o,o,o)10R(_v)'-'44 "* 2(002) V_ v9(0,0,2)l

2

rz(0,0,1) = "4" 44 "" 1(002) -- _'_ rz(0,0,1)

2

S(_v) Iv ,d_'_) t,v-(,_v) Iv r_(_v)
Oz(O,O,1) -_- "-4-'-'44 "" 2(002) -- 2---_*"Oz(O,O,1)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

4.7. Zero-Moments of the Equations of Motion. By integrating the three equations of

motion (32)-(34) over the subcell (aft'),) we obtain, in conjunction with the above displacement

expansions (57)-(59),

i(_) j(_v) r.-(,_'_) 1 _S(a_.y) ¢(_flv) 1 ,_(_flv)t;/,,(a_v) (80)
_(o,o,o) + o_(o,o,o) + _(o,o,o) + _ ,_(o,o,o) - <'oo(o,o,o)_ = ,- "1(ooo)

/(_,_._) 7(_n_) K(_-_) 2 S(_) _(o_)iiz(_-_) (81)
o(02,0) + _oo(o,o,o) + _o(o,o,o) + R(_n_-"--'_ro(o,o,o) = t, '" 2(00o)

/r(_v ) r(_/_v) K(_&r) 1 _(_/_)
_(o,o,o) + _o_(o,o,o) + _(o,o,o) + __(o,o,o) = 0 (82)

where the following interracial traction integrals have been defined:

_+l-(anv)(-_)]d_l(n)d2(V) (83)
"rj(n,O,O) -- v(o,:_v) Y-knl2 J-l_/2 J

_ , ;,,,o,,.,,,,..,,
zj(O,O,n) V(a_.y ) a-dal2 J-h_12 [u zj t, _ )

(:/_ a_._'_)(-_-h_/2), a_-_)(-t-/v/2), stand for thewhere j = r, 9, z; n = 0 or 1, and _rrj (+d_/2),
interracial stresses at :t:da/2, +hz/2, :t:I_/2, respectively.

NASA/CR--2001-210967 14



4.8.

motion (32)-(34) by f(_), and integrating over the subcell volume by parts, we obtain:

2

i(_#_) ¢(_#_) 1 rS(_#_) ¢(_#'y) ] _(_#_) d_ f/d(_#_) (86)
rr(l,O,O) - _r_(0,0,0) + R(-----(j_t _r(1,0,0) - _ee(1,0,o)_ = F 12" 1(10o)

.(a#_) d_ 1_,(_#_)
_e(i,o,o) -_ro(o,0,o) + - _ 2(1oo) (87)R(c_#7) re(I,0,0) _---

= o (s8)
z(1,O,O) --'Jrz(0,0,0) + R(a#7) rz(l,0,0)

By multiplying the three equations of motion (32)-(34) by _(#), and integrating over the subcell

volume by parts, we obtain:

First-Moments of the Equations of Motion. By multiplying the three equations of

(89)

(90)

(91)

2

_'Or(0,1,0) -- L'rO(0,0,0) + R(a_37-'---_ t rr(0,1,0) -- "00(0,1,0)J = 1-2"' 1(010)

2

_'oo(o,l,o)- '-'oe(o,o,o)+ R(---ag_'-',-o(o,l,o) _ "" 2(too)

je(c,#_) ¢(_) I q(_#_) = 0
z(O,Z,O) --"Oz(O,O,O) + R(-_flT)_'rz(0,1,0)

By multiplying the three equations of motion (32)-(34) by %.(_), and integrating over the subcell

volume by parts, we obtain:

r(0,0,1) -- _rz(O,O,O) -}- _t rv(0,0,1) -- _'OO(0,0,I)J : 0

e(o,o4) _o_(o,o,o) + _ ro(o,oj) = 0

12

zz(O,O,Z)-- _zz(O,O,O) + R(_-flT)-_rz(0,0,1) = r i-2'" 3(001)

Second-Moments of the Equations of Motion.4.9.

motion (32)-(34) by f(a)2, and integrating over the subcell volume by parts, we obtain:

(92)

(93)

(94)

By multiplying the three equations of

d2 rj(a#7) K(a_) ] o¢(_#_)
+ T2[ 0r(0,0,0) + zr(0,0,0)J -- _rr(1,0,0)

2

1 rq(_t_) _ ¢(_#_) 1 p(_#_) d_ r_fz(_#._) d_ _;/_(a#_)l
-}- R(aflT) P-'rr(2,0,O) _'80(2,0,0)_ = _ L' v I(000) -l- "iO" 1(200)I

(95)

d_rr(a#_) 2_K (a#_) 1 oc (_#_)
+ 12 woo(o,o,o) _ ,o(o,o,o)_ - _,o(1,o,o)

2 2

2 S(_#n) = p(_#n) d_ r_i_z(_#_) d_l;_(_#_)_ (96)
+ R(g_)" re(2,0,0) T_t., 2(000) + 10 2(2oo)J

da rr(_#_) K (a#_) I_ 2¢(a#_) 1 S(a#_)
_- _=(o,0,0) + _L_e=(0,0,0) + _(0,0,0)' _=(1,0,0) + _ _(2,0,0) = 0 (97)
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By multiplyingthe threeequationsofmotion(32)-(34)by9(#)2,andintegratingoverthesubcell
volumeby parts,weobtain:

2
z(a#_) h_ _I(_#_ ) + K(a_e) _ 0.¢(_#_)
u°r(°,°,°) + 12 t rr(0,0,o) z_(O,O,o)J- _'_o(o,l,0)

2 2

1 r¢(_#_) q(_#7) 1 p(_#7) h# rli/z(_ZT) h_l_//_(afl.r) 1
+ R(a/37) [_rr(0,2,0) -- _00(0,2,0)J = "_"2t'" 1(000) + 10 "" 1(020)J

(98)

h_ r(_#7)
4 _00(0,0,0)

ri(_#_) -K(_#7) 1 oe(_#7)
+ -_L rO(O,O,O)_ z0(0,0,0p -- _00(0,I,0)

2 2

2 S(_#_) _(_) h_ rT;/p(_#_) h# l_(_#_) 1
+ R(_'flT)" re(0,2,0) = r- 12 t" 2(000) + TO 2(020)J

(99)

2

h_j(a#x) h_rI(_#_) + z=(O,O,O)J- _'o;(o,z,o) + R(;Z;)_'_(o,2,o)-T oz(o,o,o) + 12 t _z(O,O,O) K(_#_) i _c(_'r) 1 ¢(_#_) = 0 (100)

By multiplying the three equations of motion (32)-(34) by _,(-y)2,and integrating over the subcell

volume by parts, we obtain:

4 zr(O,O,O)
l_ rI(_#7 ) T(_#7) ] o¢(_#7 )

+ _t _(o,o,o) + _o_(o,o,op - _'._(o,o,1)
2

l; l_/z(a#_ )1 [¢(,_#,_) q('_#'_) _ ,,(_#'_)_rt;fz(_p'_) 2
+ R(&-#-r)t_',-,-(o,o,2)- '-'oo(o,o,2)_= _" 12 t," i(ooo) + _-_"" 1(oo2), (101)

_- _o(o,o,o)
l_2 ri(_#_) _(_#_) ] _ 2q(_#_)

+ 12t r0(0,0,0) + _'08(0,0,0)J _'0z(0,0,1)

12 2
2 S(a#._) _ n(a#7) -_ [l;f_(a#_) + To 2(002)J+ R(,_._) _0(0,0,2) - ,- 12 _'" 2(000)

4 ._(o,o,o) + _t _z(O,O,O)+ 0=(o,o,o)_- _'._(o,o,_) + R(---Fa-5@_'._(o,o,2)

(102)

(103)

4.10. Interfacial Traction Integrals. From the above 21 relations (80)-(82) and (86)-(103) it

is possible to establish expressions for the interfacial traction integrals I (_#_) J(_#_) K (_zT)
rj(O,O,O)' 8j(O,O,O)' zj(O,O,O)'

j = r, _, z, as follows.
l(_#'r) .Substitution of eqn (80) into eqn (95) yields the following expression for rr(0,0,0)"

12 q(,_#_,) 1 [S(,_#7) q('_) l
d_ Wrr(1,0,O)-{- 2R(_#7) t r,-(o,o,o) - '-'eo(o,o,o)_

2
6 fS(_#._) <,(_#'r) "1 ,_(o,#_)d_ i)_v:(_#_)

d2R(_#_) t rr(2,0,0) - _'eo(2,0,0)_ + v _-_ 1(200)
(104)

Similarly, substitution of eqn (81) into eqn (96) yields
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/(_#7) _ 12S(_#7) 1 S(e#7)
o(o,o,o) - _ r00,o,e)+ a(----=S__-0(o,0,0)

12 ¢(o_#7) p(O_#7)d_ T_Z(_#7)
d_R(,_#.r) _'_o(2,o,o) + _" _(2oo)

Substitution of eqn (82) into eqn (97) yields

/(_#_)z(o,o,o) = 0

j(_#7) .
Substitution of eqn (80) into eqn (98) yields the following expression for or(o,o,o)'

jo(o_#_) 12 ¢(_#7) 1 r¢(o_#,y) o(o_#_) •l
r(o,o,o) -- h-_r°(°'l'°) + _t_'Tr(o,o,o) - Joo(o,o,op

2

6 rc(,_#7) c(°_#7) I p(O_#7)h# _;(,_#_,)
h2#R(_#7) t'-%-(0,2,0)- _ee(o,2,0U+ _-_"' i(o2o)

Similarly, substitution of eqn (81) into eqn (99) yields

je(o_#7) 12 ¢(,_#7) I S(O_#7)
e(o,o,0) - h_ _0e(o,l,o) + _ _e(o,o,o)

h 2
12 ¢(o_#7) _(o,#-y) fJ_7(_)

h2#R(_#_) _'re(o,2,o)+ v 2-_'" 2(020)

Substitution of eqn (82) into eqn (100) yields

j(o_37)e_(o,o,o)= 0

w(_#7) .
Substitution of eqn (80) into eqn (101) yields the following expression for "*_(o,o,o)"

K(O_#7) _ 12 S(O,#_) ' i rc(_#7) ¢(_#7) I
_(o,o,o) - _ _z(o,oj) + 2R(_#7) [_(o,o,o) - _ee(o,o,o),

2
6 r¢(o_#7) ¢(_#'_) I ,_(o,#_)l_ _;/z(o,#7)

127R(_#_)t'_rr(0,0,2) - '--'ee(o,o,2)J+ v _-_"" 1(002)

Similarly, substitution of eqn (81) into eqn (102) yields

Kz(,_#7) _ 12 ¢(_#7) 1 <,(_#7)

o(o,o,o) - _'_oz(o,o,_) + __o(o,o,o)

12 S(,_f_) + p(O,#_,)l_T;#(o_#_)
l_R-(_Z.r_ _(0,0,2) 20 '" 2(o02)

Substitution of eqn (82) into eqn (103) yields

K (_) = 0
zz(O,O,O)

(1o5)

(106)

(107)

(108)

(109)

(110)

(111)

(112)
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It shouldbe notedthat the remainingnine expressionsfor the interfacial traction integrals
_._o )o',J_._ o', <_ i' (J = r, 0, z) have already been given by eqns (86)-(94).

3_ , , ) Ot , , ) 3L_, , )

It is convenient to define the following quantities

2

i(aPT) = I(_#7) _ _(_#7)dZ_T;ff(a#7)
rr(0,0,0) -r(0,0,0) _ 20 "" _(200)

2

"tO(O,O,O) rO(O,O,O) -- r" 2-0" 2(200)

2

_(_#7) = i(_#7) ,_(_#._) d_ _;/l(_#_)
%r(1,0,0) rr(1,O,O)- ,-" 12"" 1(lOO)

2
,_(a#_,) do T;fl(a#'_)

- ,-" _-_"" 2(lOO)

2

20 "" 1(020)

i(_#7) = I(_7)
,e(1,o,o) _o0,o,o)

j(,_#'_) = j(_Z'y)
e,(o,o,o) e,-(o,o,o)

2

._(_3":') 7-(o,P",') _ p(O,#7)h_ifz-(_#'r)
aee(o,o,o)= _'ee(o,o,o) 20 "" 2(020)

2

..(_P'1) _ ](_7) n(_#7) h_ _;fz(_#_)
3o,(O,l,O) -- e,(o,_,o) - ,- 12 "" _(OlO)

2

,.'ee(o,1,o) = '-'e_(o,1,o) 'i_ "" 2(OLO)

l:_
_.(_#7) , _ w(_#_) _(_#7) 7 _;/7(_#_)
%,-(o,o,o) - "'z,-(o,o,o) - ,- _ "' 1(oo2)

k(_#_) = _,.(_#_) _ p(_7) l_ _7(_)
z_(o,o,o) "'_e(o,o,o) __ "' 2(002)

2

k(_'#v) = K('_#7) _ ,_(,_#7)/_(_(,_#7)
zz(O,O,1) _z(o,o,_) _" 12" 3(OOl)

(113)

(114)

(115)

(116)

(117)

(i18)

(119)

(120)

(121)

(122)

(123)

It should be noted that the above eleven new quantities (113)-(123) are given solely in terms of
¢(_#7)

the stresses _'O(t,mm)' eqns (66)-(79), and therefore involve no time derivatives of the unknown
uz(_#7)

displacement coefficients ,, _(t._)"

4.11. Volume Averages of the Equations of Motion. Once the interracial traction integrals

(83)-(85) have been established, we can readily express the volume averages of the three equations

of motion, given by eqns (80)-(82), over the (aflT) subcell of the (p, q, s)th cell. As it can be readily

observed, eqn (82) is trivially satisfied, while eqns (80)-(81) are, respectively, given as follows:

2

- _" 1(ooo) - _'" _(200)- _ _(o20)- 20"" l(OO_)_

i(,_#7) + .:(o,#_) z..(':"#_) 1 r<,(o_#7) <,(_#_) ]
_r(o,o,o) Je,(o,o,o) + %,(o,o,o) + R(&#-_)t'.-',,(o,o,o) - '--'ee(o,o,o)_ (124)
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t v' 2(000) -- 20 2(200) -- "_ "' 2(020) -- 20 2(002)J

_ i(_#7) __ _(_#'Y) _(_#7) ____2 S(_#'d (125)
-- To(o,o,o)-Joo(o,o,o) + %,o(o,o,o)+ R(o,#q,) ,,o(o,o,o)

These two equations form 16 out of the 112 relations needed for the determination of the second

W(,_#7)time derivatives of the unknown displacement coefficients iUmn)"

4.12. Imposition of the Traction Continuity Conditions. The traction continuity condi-

tions are imposed on an average basis at the subcell and cell interfaces. These conditions imply

existence of certain relationships between the aforementioned interfacial traction integrals as de-
scribed next.

Interfacial continuity of tractions in the radial direction. Let us define the following

two new quantities:

F_(_#7) [(v,q,_)-_(_#7) (p,q,s) -(_#_) (P'q'_) (126)-- urJ ?(_)=d(P)/2 --urJ _=(_)-----d_)/2

G_'r) l(v,q,s)= _(_#_)i(v,q,_) - (_#7)[(p,q,s) (127)

with j = r, 0, z.

Substituting the interracial traction continuity conditions (37) and (40) between cells and sub-

cells in the r-direction, we obtain, respectively,

Fr(lfl'd t(v,a,s)= _(2#7) (p,q,_) _(2#7) (p-l,q,s) (128)
j o_j _(_)=_#2p)/2 -_j _(2)=d(2___)/2

By addition and subtraction of equal quantities to and from the last two equations it can be easily
verified that

2_(l#7)[@,q,s)=[ F(2#7) (7(2#-r)l(p,q,,) [F(}#7) (7(2#7)](p-1,q,s) (130)/_r_ -- " +--rj _ -- +--_J

2_{1fl7) i(p,q,s)__. . _(2ZT)l(p,q,_) (2fl7) (7(2#7)l(p-Lq, s) (131)
t I._rj J -- rj J

i(_#7)
Then employing the definition for _j(_,0,0), eqn (83), we obtain the corresponding relations:

l(i#,_) i(p,q,_)_/(o,o,0) _ _. r(2f_) ](p,q,s) ,7 1(2#_) i(v-l,q,s)- -_%j(o,0,o) -_2 _#(o,o,o)

,-- i(2#'d . }(p,q,_) -(2f_7) ](p-l,q,s)+ n3 _#(_,0,o) -Z41_V(t,o,o) (132)

L(1/3"r) . i(p,q,s ) ,7 r(2f_'r) I(p'q'=) ' Z i(2#_) [(p__,q,,)#(Lo,o) = _5_/(_,o,o ) -r _ r#(1,o,o)

Z' l(2#'r) [(p,q,s) ,_ r(2#7) ](p-l,q,s)
-- 7 rj(O,O,O) T_S_rj(0,0,0)

where j = r, 0, since for j = z all quantities vanish.

(133)
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The above equations (132)-(133) are applicable for internal cells where p = 2, 3, ..., Np. For the

1st cell p = 1 the continuity of tractions at the interfaces between the subcells of this cell can be

easily shown to yield the single relation:

[(7(1_) (lZ_) (1,q,s) [G(2._) _ F(y-y)](1,q,s) (134)+ F 'j ] = L- j
This single relation replaces the above corresponding two relations (132)-(133) at interior ceils.

This relation provides

[I(lZ-_) 2 I(lfJT) t(1,q,s) _r "7 r(2_7) "7 r(2_7) l(1,q,*) (135)
rj(0,0,0) + d'l rj(1,0,0)J ---- _]---_llrj(0,0,0) + '(-v31rj(1,0,0)J

where j = r, 0, since for j = z this equation is identically satisfied. Again, this relation replaces the

above two equations that are applicable at interior cells.

Substituting the established expressions for the inteffacial traction integrals into relations (132)-

(133), we obtain the following equations for internal cells when j = r

__ [p(lflT) dl 2 w(l_7)](p,q,s)
1(200)J

2

_ [p(l_7) dl _l/-(l_9"y) ] (p,q, s)
l(loo)J

d_ 1;fz(2_7)l(p,q,_)_ d2_Z._ [,_(2fl7) _2 i'/_/- (2/37) 1 (P- l,q,s)
Z1 [p(2fl')') 2"0" l(200)J "-'L[_" 20 _" l(200)J

Z (2f_v)d2 tyv-(2f_)l(p-l,q,s)+ Z3[p(2Z_) d_ W(2Z_)t(p,q,_) 2
1(10o)_ - 4[P 1-2- _O00)J

_ i(1_) ](p,q,_) ,_ i(2_) ](p,q,s) -Z i (2_) [(p-l,q,s)
-- rr(0,0,0) -'l-Z'Jl rr(0,0,0) "t- 2 rr(0,0,0)

- Z i (_f_'_) I(p'q's) --Z i(2_) l(p-Lq,s )3 _r(Lo,o) -r 4 _ffl,0,0)

d_ ly¢(2Z_)10,,q,_)
+ Z_[P(2Z_)i_ z(100)_

2
_ Zw[p(2f_'_)d2 t_(2_)ff_,q,_)

_(2oo)_

2
_. [,_(2B7) d2 T_7(2/_7)](p-l,q,s)

+ _o_v _" _(lOOp

d 2
Z.[._(2J_"y) 2 _(2;3"t)](p--l,q,s)

-{- _t_-" 2-0 1(200)]

,;(1_,) ](p,q,_) ,;, i(2_7) i(p,q,._) - .(2f_-.,.) l(p-_,q,,,)
---_ _rr(1,0,0) --_5 rr(1,0,0) --Z6Zrr(1,0,0)

-- .(2_'y) I(p,q,s ) ,7 z(2/_-/) [(p-l,q,s)-_- _7$rr(0,0,0 ) -- z_8"_rr(0,0,0)

For j = 0, the two relations (132)-(133) become:

d2 W(1/3-y) _(p,q,s)_[pO_) 2(2oo)]

2
_ r,.,0_",')d_ t;6"(lf_",')ffv,q,s)

tv 12" 2(1oo)]

(136)

(137)

d2 _(2_'_) 1(p,q,s) 7._[,_(2_) d_ l_(2f_..t) ](p-l,q,s)
-- Zl[p(2/3"_) 20 2(200)J - _:tl"" "_'" 2(200)1

2

+ _ t_" 12 2000)] _t_" 12 2000p

4(lfl_,) ](p,q,s) __, i(2_7) ](p,q,s) -- :(2_')') (p--l,q,s)= °_o(o,o,o) -r_ _(o,o,o) +z290(o,o,o) [

-- Z i (2_) i(p'q's) -Z i(2_-_) i(_-l,q,_) (138)
3 rS(1,O,O) -_ 4 rO(1,O,O)

d221_(2#7) l(p,q,,) d2r_(2flT) 2 T_/"(2,_7) l(P-l,q,s)

+ Z5 [P(2_7) "_ 2(lO0)J "{7 z"6 [p i-2 '" 2(100)]

- ZT(P (2_3_)_'_"d2lX/'(2a_)2(200p](P'q")+ Zs r_(2/_''/)_v_---1_,(2#r)202(2oo)_](P-l'q")

.Alf_v) [(p,q,,) ,7 i(2/_,) [(p,q,,) -- _(2_) . ]@-l,q,s)
_- %0(1,0,0) --z_5 rO(1,O,O) --_6_r/_(1,O,O)

i(2_) i(p,q,_) _ -(2f_) . l(p-l,q,_) (139)+ _7 r_(0,0,0) -_S%_(0,0,0)
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Consequently,thesefour equations(136)-(139)provideadditional16relationsfor the secondtime

derivativesof the unknowndisplacementcoefficients,,,(tmn).

The two relations (132)-(133) are applicable at internal cells p = 2, ..., Np. For the boundary

cell p = 1 we use the corresponding relations (135). For j = r we obtain

while for j = 0:

20" 1(200) d2,_ _(2fl_) 2 _(2_-_)

_ Z3p(2dT) d_ _T(2pT) l(1,q,s) r .(lfl?)
-6-'--1(100) J -_ [--_rr(O,O,O)

,_rl -(2/3")') 2 i(lfl'/') ,_,7 .(2fl'y) ](1,q,s)

- _1%_(°'°'°) dl _r(1,o,o) + _t"3%rO,0,o)J
(140)

d2 w(l_7) d22t_l./(2flT) dl " (lilT)
[p(lflT)___ 2(200) + 2Zlp(2D_)_" 6 "" 2(200) + P(lfl_)-_-W2(loo)

2

_(2_) d2 W.(2fl_) 1(1,q,_) _ .(1_)
-- _3P -6- 2(100)J = t-_r0(o,0,0)

a,_ _(2fl_) 2 iOflx ) _ .(2fl_,) ](1,q,s) (141)
-- _Z_l_r0(0,0,0) -- _ r0(1,0,0) _ Z_3Zr0(1,0,0)J

These are 8 relations that are applicable for the boundary cell p = 1. For this cell however there

are another 8 relations that express the applied boundary conditions at the surface r = R0. These

latter relations will be presented in Section 4.14. Consequently, we have altogether 16 relations for

the second time derivatives of the unknown displacement coefficients ,, _(tmn) in this boundary cell,

p = 1, (just like any inner cell p _ 1).

Interracial continuity of tractions in the angular direction. A similar analysis for the

traction continuity conditions in the 0-direction yields for internal cells q = 2, 3, ..., Nq

j(o,o,o)
= _y_r(_2_) ](p,q,_) _.- j(_2_) ](P,q-LO•"0(o,o,o) -_2 oj(o,o,o)

._pj.(a2"),) ](p,q,s) y_ .(a27) ](p,q-l,s)
q- x3 Oj(O,l,O) -- 4aOj(O,l,O)

(142)

je(ov_) i(p,q,_) ....(,_-_) ](p,q,.) _.T .(-_'_) i(_,q-_,.)
j(0,1,0) = z 5°0j(0,1,0) -t-z 6_0/(0,1,0)

"v" T(a2")') ](p,q,s) --_7 r(a2"/) [(p,q-l,s) (143)- _7_0/(0,0,0) -r_8_O(o,o,o)

where j = r, O, since for j = z all quantities vanish. The above equations (142)-(143) are applicable

for internal cells where q = 2, 3, ..., Nq.
For the 1st cell q -= 1, the continuity of tractions at the interfaces between the subcells of this

cell yields the single relation:

[ T(al-_) 2 r(alT)](p,l,s) or 12" /(a2_) x7 .(a27) ] (p,l,s) (144)
_'0(o,o,o) + __ _'oj(o,l,o)_ -- _t -_ _'_oj(o,o,o) + _3aoj(oj,o)_

where j = r, 0, since for j = z this equation is trivially satisfied.
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Substituting in (142)-143)the establishedexpressionsfor the interfacial traction integralswe
readilyobtain for internal cellsthe followingexpressionswhenj -- r:

2

_ [p((_l_.)hi x;fl(,_vy)](p,q,s)
_'" 1(o20)J

h 2 h 2
_ y1L_(a2"r) 21_7(c_27)](p,q,s) _ V.[,-_(a2"7)'_21_(a23')](P,q-l,s)

L_' 2-0 " 1(020)J _ ,_Lt-" 20 -- 1(020)J

h 2 ] 2
yq In(a2")') '_2 l_(c_2")') ](p,q,s) [._(a2-y) t2 tj_r(C_2"Y) l (P,q-- 1, S)

+ otr 12"" l(010)J -- Y4tv _ l(010)J

_(_t-y) ](p,q,_) .v .(_2-_) ](v,q,_) -y, A,_2-_) i(p,q-l,_)
= (]Or(0,0,0) Tz 1Jor(O,O,O) T 2JOr(0,0,0 )

14 :(_2v) i(m,s ) _....(_2v) f(p,q-l,s)
-- 3J Or(O,l,O) -_ z 4J Or(O '1,0)

2

_ r,_(cd_)h_ T_(az._)](p,q,s)
t_ 12 l(olo)J +

+

For j = 0 the two relations (142)-(143) yield,

2
_r.ff(_l-r) h_i;i..(_l"Y) ffp,q,s) _

t_" 20"" 2(020)J

h 2 h 2
Y5 [o(_2_) ,_2 W(_2_) l(_,q,s) + _ r.(_2_) _ _(_2v) l(p,q- 1,s)

'" 12 l(OlO).l -ott-" 12 - l(OlO)J
h 2 2

y;[p(O,2_) '_2t;f_(o_2v)ffr,,q,_) ..,..-r/,_2",,) h2 .d:.,-(_2;)lO:,,q-l,s)
20" 1(o2o)J + _s t_ 2-0 _ l(020)J

j(_l_) i(p,q,s) I4 -(a2"/) t(p,q,s) y_ -(a2"/) [(p,q--l,s)
Or(0,1,0) -- 5J0r(0,1,0) -- 6Jar(0,1,0)

yr_('_2v) [(v,_,s) v -(,_'_) i(v,q-_,_)JOt(0,0,0) --_sJor(o,o,o)

2 h 2
Y_rP('_'_)h_f/v('_'Y)lCp'q's)t-- ._ r-(,_v) 2._(_'_7)_(_,q-_,_)

20 - 2(o2o)_ - _ _t_ _-_ _ 2(o2o).J

h 2 h 2
_R[,_(e_2"7)_2I_7(a2Y)l(p,q,s) "v" r_(a2_) 2W(e_2"7)](p,q-l,s)

+ _t_" 12 "" 2(010)J -- z4[/_ 1-2 2(010)J

,;((_l"y) t(p,q,s) --v .(_2"_) i(p,q,_) _y :(,_2-r) i(p,q-L= )
J_(O,O,O) -I-z lJo0(O,O,O ) T 2(]00(0,0,0 )

• .- _(,_2"_) l(p,q,_) -v _(_) i(p,q-Z,_)
-- z 3jO0(O,l,O) -I-.t 4(]00(0,1,0)

(146)

(147)

2 2 h 2
__[,(el'y) h_ i_/(c_lv) ](p,q,s) '_._2lXZ(o'2_f) ](p,q--l,s)v r_(a2V) h2 T},"(c_2V) l(p,q,s)

Lt-" 12 '' 2(010)J + _5[/J "_ vv2(010)J + Y6[p(_23') 12 "' 2(o]o)J

2 2

v r_(a2V) h2 T_r(a27) ](p,q,s) + [ __h2 T_/'(a27) ](p,q-l,s)
• rt_' _'_ _(o2o)_ ]Q tP(=:'_)_--6" _(0_o)_

__ .i(°d"/) I(p,q,s) "v" .:((_2")') ](p,q,s) "L.- -(a2"),) [(p,q--l,s)
-- JO0(O,l,O) -- Jr 5(]08(0,1,0) -- .t 6jO8(O ,1,0)

_.- -(_2v) l(p,q,_) v :(_2_) i(p,q-Ls) (148)+ _ 7_o0(o,o,o) - _s_oo(o,o,o)

Consequently, the conditions that the tractions are continuous at the interfaces in the 0 direction

provide 16 add{tional relations which are valid for internal cells q = 2, 3, ..., Nq.

For the boundary cells q = 1, we obtain from eqn (144) the following expression when j = r:

2
2 v _(_2v) h2 ,_r(a27) ,_(a17) hl T_7(cd.'y)

+ _' _(o_o) + _" _-"Z(OlO)

h 2_ vo,,(o2"_) 26:/_2"_)1(_,_,_) r_jo_v)
"_/" "_"I(010) 1 = t dOr(O,O,O)

ov -(a27) 2 ,/(al"y) o_]" z(_2"t') ](p,l,s)

-- _z 190r(O,O,O ) -- _ldOr(O,l,0) + '::'_ 3JOr(0,1,0)]

2

t,--" _'" l(0_o)

(149)
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while for j = 0:

2

r,,(o,1;) hi T;fl(o,l_) + _h'_T;fr(,_2.v)+ ...,(_vv)h.1,_(°'lv)
L_ 2-0" 2(020) 2YlP(°_2v)20"" 2(o20) _ --6-2(olo)

A2_.,-_(_2,v) 2 .r£,-(o_2v)l(vJ,s) r_ .;(o,l.v)
-- 13P -_'vv2(010)] = t JO0(O,O,O)

2 .(_l-y) _V -(_2v) ](p,a,_) (150)
_r -(_2v) _1700(0j,0 ) +-- Z, l lJo0(o,o,o ) -- _ 3JOO(O,l,O)i

Thus for the boundary cells q = 1 we have 8 relations which together with the 8 imposed boundary

conditions at the surface of this cell 0 = 0 (which will be discussed in Section 4.14) form the required

16 relations (just like any internal cell q # 1).

Interfacial continuity of tractions in the axial direction. Let us consider the traction

continuity conditions in the periodic axial z-direction. Here we define the two quantities

F(-Ov) i(p,q,s)= _(-_) (p,q,s) -a_. _) t (p'q's) (151)
J °zJ _'(_)=/7/2 _'(_) =-/-t/2

",q,s) (t52)
z3 ° zj _.('r)=l_/2 " 2('v)=-l..t/2

with j = r, 0, z. It can be readily established that due to periodicity of the stresses between repeating

cells in the axial direction, the continuity of tractions at the interfaces between the subcells of the

cell yields

F(7_1) [(P,q,_)=-F}_. _2) I(P,q,s) (153)

G(_.f_l) l(P,q,s)= ---JC(a'f_2) I(P,q,s) (154)

The above first equation (153) gives the following nontrivial relations

l K (_m) , _.(_2) l(p,q,_) = 0 (155)
1 zj(0,0,0) -{- t2X_zj(0,0,0) j

for j = v and 0, while for j = z we obtain from eqn (154)

[K (a/91) - = 0K(_2) l(P,q, s)
zz(0,0,1) zz(O,O,l)J

Consequently, the following relations can be readily established in the cell (p, q, s)

for j = r, and

l 3
p(a_l) l_ T_z(_Z!) .(_Z2) 2 l_(a_2) l ,.(a_) - l k (_2)

"" I(002) "{" /" 2-0 I(002) = -- ln'zr(O,O,O) 2 zr(O,O,O)

13

20 2(0027 t_ 20"" 2(002) -_ --elr_z0(0,0,0) -- _2r_z0(0,0,0)

(156)

(15 )

(15s)

for j = 0. In addition we obtain for j = z

2 2

,_(afll) ll i_(a_l) n(a/_2 ) l 2 (jv_(afl2) k(afll) _.(afl2) (159)
" T2 - _(oo_) - _ T2 - _(oo_) = - _(o,o,_) + '_(o,o,_)

• . -" (o,_)
These relations provide 12 additional equations in the 2nd derivatives W)(imn).

In summary, the imposition of traction continuity between neighboring cells and between the

subcells of the cell in the radial, angular and axial directions provides a total of 44 equations in the

2nd time derivatives "j(_mn)"
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4.13. Imposition of the Displacement Continuity Conditions.

Continuity of displacements in the radial direction. Thecontinuityconditions,imposed
in theaveragesense,on thedisplacementvectorat the innersurfacesaswellasbetweenneighboring
cellsin ther-direction,eqns(43)and (46),yield

[Ti,.-(l_v) dl TX,.(I_v)
_"1(ooo)+ 2 " 1(lOO)

[T;f;(2_v) d2 I/¢(2Bv)
"" 1(ooo)+ -_- 1(lOO)+

[,_,(t_) dt f_(l_)
vV2(ooo)+ -_ 2(lOO)

[1_7(2_) d2 T;f7(2/_-_)
"" 2(000)4- _ ,, 2(100)"4-

" Ti;(2#;) d2 lyd(2_) d2 W(2/_5 l(v,q,8) (160)
4. -- VVl(000) -4- -_ 1(100) -- 4-- 1(200)J --- 0

_;fz(2Z_)l(p,q,.,) r,;fz(lZ"Y) dl fjv(tf_-y) 2d_ _(1_)](p+l,q,8) (161)
_-'" 1(2oop = t-1(ooo) - T 1(lOO)+ 4 1(2oo)J

-_- 'I/d(_o_ tiz (2_) d21_,(2_'_) d2
_ _2 T_7(2fl'3') 1 (p,q,s)

4- " 2(000) 4- "_ 2(100) 4 _" 2(200)1 _- 0 (162)

d_ l_:(2/_-y)1(p,q,s) ,,-';,(1,_) dt i'_(113_5 d2_v:(1fl_)](p+Lq,_) (163)
4 '" 2(200)J = tW2(ooo) - -_- 2(100)+ 4 2(200)J

Obviously, eqns (161) and (163), are not applicable at the boundary cell p = Np. These relations

are replaced by the boundary conditions that are prescribed at the surface r = R1 of this cell as
will be discussed in Section 4.14.

Continuity of displacements in the angular direction. The continuity conditions, im-

posed in the average sense, on the displacement vector, at the inner surfaces as well as between

neighboring cells in the 0-direction, eqns (44) and (47), yield

"" 1(000) 4- 2 "" 1(OLO)

'" 1(0005 4- 2 "" 1(010) 4-

[_;(_5 hlw(_l_)
""_(ooo) + _ 2(OLO5

-(e2-y) h,2 l_/. (a2_,)

"" 2(000) 4- -'2 " 2(010) 4-

h 2 _;i;(,_l.r) _z(,_2.r) h2 _v:(,_2._) h2 l_/-(vt2"Y)](p,q,s)__ 0 (164)
+ -T'" :,(020)- "' 1(000)+ -_ 1(0).0)- _ "" 1(020p -

h_ _;fz(az_)](p,q4-1,s) (165)h_W(_2,..r).@,q,s) r_.,:i,.(,_l_) h_T_;(_l-.,,) 2
_- _(o2o)_ = ['" 1(ooo) - 2 "" 1(olo) + 4 "" 1(o2o5_

h12 ,_/-(ot 1"/),_/.(_2"r) _ "W2(;21;_ h2_lf(a2_t),(p,q,s )+ _ "" 2(020) - "" 2(000) + - -_ 2(o2o)_ = 0 (166)

hi I;_(al_)ffp,q+Z,_) (167)
4 "" 2(020)J = [" 2(0005 -- y 2(010) 4- -4- 2(020)J

Equations (165) and (167) are not applicable at the boundary cell q = Nq. These relations are

replaced by the boundary conditions that are prescribed at the surface 0 = e of this cell as will be
discussed in Section 4.14.

Continuity of displacements in the axial direction. The continuity conditions, imposed

in the average sense, on the displacement vector in the periodic z-direction, eqns (45), provide

Furthermore,

12

["" 1(000) 4- "4" 1(002) -- "" 1(000) -- 4 1(oo2)_ = 0

12
[_;(c_fll) /__2l_/.(c_fll 5 X_:].(c_fl2) _2 _:]-(afl2) ](p,q,s)

t" 2(000) 4- 4 '" 2(002) -- "2(000) -- 4 "2(002)J : 0

[_ ,i;(_1) , ,_;(,_2)_(_,q,8) = (/1 + 12) _.z_1vv 3(001) 4- _2_r3(O01)J

(168)

0.69)

(170)
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where_zzis the globalaxialstrain that will bediscussedin Section4.15.This last relationfollows
from a homogenizationprocedurein theperiodicdirectionthat hasbeenpresentedin Ref. [19I.

Thesedisplacementcontinuityconditionsprovidealtogether44relationsin the 2ridtime deriv-

atives, j(Zmn)"

4.14. Imposition of the Boundary Conditions. The tractionsat the bottom (r = R0) and

top (r = R1) surfaces are imposed by employing the relations:

where j = r, 0.

imposed we obtain, respectively,

_, (1#7) (1,q,s) (171)
--rjCO#'r)I(l'q's) -F(¢ #_') I(l'q'_)= zcrrj _(1)=_d_1)/2

G_j(2#7) i(Np,q,s) "l-r rJ'r_(2#')')i(Nv,q,s)= ZO'rj_(2/35') .7(2)=d_Np) /2(Nmq's) (172)

By averaging these relations over the surfaces upon which these tractions are

1/_7) dlr(1#7) l(1,q,s) ___ fBj(O,t)
_j(1,0,0) - 2 "_j(0,0,0)J

[/(2#7) d2 T(2/37) ] (Np,q,s)
rj(1,0,0) + {--_j(0,0,0)J = fTj(O,t)

(173)

(174)

It follows, by employing the established expressions for the interfacial traction integrals i(?,Z(r) n,,

that the following equations are obtained in terms of the unknown 2nd time derivativeJ_ t_e
u/-(,_#_).

coefficients ,, j(zm,O"

3

d_ T_fz0#'r) .(1#7) dl iyd0/%) 10,q,s) (175)
[p(l#_).i.2,, moo) - _ _ 1(2oo)J

[p(tfl_) d2 _Xz(l#7) ,_(1#_) d_ T_O#7 ) l(z,q,_) (176)
_'" moo) - _" _ 2(2oo),

d_ t_1(2#7) 3 2
[p(2#7) ,_(2#7) d_ lfl?'(#7) ](Np,a,s) (177)_'" i(ioo) + _" _" 1(2oo)J

2 3

r,.,(2#.v)d2 _/-(2#7) .,.,(2,87) d_ _v_(2#7) l(Np,q,s) (178)
_,- ]_" 2(loo) + _" 40 2(2oo)_

Similar analysis provides the following relations for the tractions imposed in the average sense

at the left (0 -- 0) and right (0 = O) boundaries:

[j(_tT) hlT(CdT) l(p'l's) ----fLj(r,t) (179)
oj(o,l,o)- 2 _'oj(o,o,op

[r(a27) h2 z(a21') l(p,Nq,s)
_'oj(o,a,o) + _-"oj(o,o,o)_ = fR3(r,t) (180)

These relations readily imply the following equations:

2 3

r_(cdT) hi l_7(al"/) t_(c_l.7) h_l_r(al'/) ](p,l,s) r .(a17) hl ,;(al'7) ](p,l,s) (r, t) (181)
tv "_'" l(OZO)-- v 40 - a(o2o)J = t--3Or(O,a,O)+ -'_.tOr(O,O,O)J + fir

r i(1#7) dli(l#v) ]O,q,_)
---- L-- rr(1,0,O) -_- _- rr(O,O,O) -I- fBr(O, t)

= [-_00,0,0) + -_>o(0,0,0)_ + f_o(O, t)

[ i(2#7) d2 .(2/_'r) l(N_,q,s) t)
= t-- rr(1,0,0) 2 _rr(O,O,O)J + fTr(O,

, .(2/_7) d2 z(2#7) 1(gp,q,s)
= [--ZrO(1,0,0) 2 %0(O,O,O)J + fTO(O, t)
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2 3

12" 2(010) e T0 2(020)J = [-300(0,1,0)

h 2 h 3
r (a2_) 2T_r(a2_') _(ct2",()'*2_r(a2_)](p,Nq,s) r .(c_23')
if) "_ VVI(010) + Y 40 1(o2o)J = t-Jor(o,l,o)

" i2"" 2(olo) + ," 40" 2(0_o)J = t Jee(o,l,o)

hi d ((M-l,) t(p,l,s)

+ -_-Joo(o,o,o)J + fLo(r,t) (182)

h2 .(a2_) l(p, Na,s )

- Tjo_(o,o,o)} + fn_(r, t) (183)

h2 _(_2-_) l(p,Nq,_) (184)- TJoo(o,o,o)j + fRo(r,t)

If, on the other hand, time-dependent displacement is imposed at the boundary, the same

averaging procedure is employed to establish the required expressions. For example, if the radial

displacement u_ is imposed at the right boundary 0 = O, the following expression is obtained:

rT;/z(_2_) "" h2 i_(_2_)](p,Yq,s)
t" I(000) -_ -_- T 1(020)I = ]Rr(f', t)

(185)

4.15. Imposition of Plane Strain or Generalized Plane Strain Conditions . So far, we

have established 104 relations in every cell for the determination of the 112 unknowns Wt_) in

this cell. The final set of 8 relations is determined from the imposition of either a plane strain or

generalized plane strain condition in the periodic direction.

By applying a homogenization procedure in the periodic z-direction, it can be shown that the

following relation holds

"" 3(ooo) (186)
_zz = Oz

for all ct, fl, 7 = 1,2 in all the cells, where _ is the far field average normal strain in the z-

direction. Utilizing this relation, we can reduce the number of unknowns in each cell from 112
(_#_) •

to 104 by replacing the 8 unknowns W_(ooo) with the single new unknown _. Consequently, the
number of unknowns in each cell is 104, £nd the number of unknowns in the entire FGM composite

comprised of NpNq cells is also 104NpNq + 1.

The global axial strain is related to the local strain _(a#7) _xz(_#'_)_ = "" 3(ore) as follows

1NvNq 2

_zz-_-y_ E _ d(aP)h_q)l_£(z_f_7) (187)
p:l q=l a,/_,3'=l

where V = D(Ro + R_)O(l_ + 12)/2 is the total volume of the composite.

Under plane strain condition this far field axial strain vanishes, namely,

_=0 (1.88)

For a generalized plane strain situation, on the other hand, the average normal stress in the

z-direction vanishes:

1N_Nq 2

=- c, # 7 z_(O,O,O)
p=l q=l ot,13,2_=1

and the 2nd time derivative of this equation forms the required additional relation.
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4.16. Summary of the Governing Equations. In summary,wehavealtogether104NpNq+I
equationsfor the determinationof the 2nd time derivativesof the 104NBNq+ 1 displacement

coefficients,1f¢(_7)),and the 2nd time derivativeof the unknownglobal axial strain rzz. This
systemof equatlonscanbe representedin thefollowingcompactform

AU(t) = f(t) + g(t) (190)

where the structural stiffness matrix A contains information on the geometry and thermomechanical

properties of the individual subcells (a_V) within the cells comprising the functionally graded

material. The displacement coefficient vector _)(t) contains the 104NpNq + 1 2nd time derivatives

of the unknowns:

0 (_'_)(t),_= (t)] (191)0(t) : (t), ..., N Nq
where

_l(_Z'r)(t) = rTXz(_ZT):t_ _'z(_)_'_ "_'(_7) (192)t'_l(tmn)< J, "2(Zmn)W' vv3(lm,_)(t)]pq 1,m,n : 0, 1,2.

The mechanical force vector f(t) contains information on the mechanical boundary conditions

and the thermal loading effects generated by the applied temperature. In addition, the inelastic

force vector g(t) appearing on the right-hand side of eqn (190) contains inelastic effects given in
R(_ZT)terms of the integrals of inelastic strain distributions that are represented by ij(l,m,n)"

The field variables that are expressed by the vector _l(t) can be determined by integrating the

above equation explicitly in a step-by-step timewise manner. To this end, let us introduce a time

increment At. The time integration at time t yields

U(t + At) = (At)2n-t[f(t) + g(t)] + 2U(t) - U(t - At) (193)

This difference expression which approximates the above 2nd order differential equation provides

the displacement coefficients at the next time step t + At from the already known quantities at the

current time t and the previous time step t - At (assuming that at time t : 0 the thermoelastic

field distribution in the composite is known). Note that for time-independent material properties

the matrix A has to be inverted just one time. This procedure is continued until the desired final

time is reached.

5. APPLICATION

To demonstrate the potential of the outlined theoretical framework of the two-dimensional higher-

order theory for cylindrical functionally graded materials with dynamic loading capability, a small

computer code was developed to simulate one-dimensional wave propagation due to impulse loading

in a layered half-plane as a special case. The half-plane consists of alternating layers of steel and

polymeric material (PMMA) 0.025 and 0.0784 cm thick, respectively. Both materials are assumed

to be linearly elastic with the relevant material parameters given in Table 1.

Stainless steel

PMMA

Young's modulus, E (dyne/cm 2)
1.258 × 10m

0.089 x I0r_

Mass density, p (gm/cm _)
7.9

1.15

Table 1. Material constants of a half-plane consisting of alternating steel and PMMA layers.
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Foran impactedlinearlyelasticcompositeby a spatiallyuniformloadingappliednormalto the
layering,an exactsolutionby ray theorycanbeconstructed,Ref. [23].Figures2 and 3 illustrate
the predictionsby the ray theory taken from this referencefor the casewhen the half-planeis
impactedby a unit impulsivenormalstressappliedat the centerof the first layer (steel)at time
t = 0 sec. The normal stress response with time is detected at the centers of the llth, Fig. 2,

and 12th layers, Fig. 3. The corresponding results generated by the computer code developed for

this particular one-dimensional wave propagation case are included in the bottom portions of these

figures. Excellent agreement between the exact ray-theory solution and the higher-order theory

predictions is observed.

6. PLANS FOR FUTURE WORK

The completed generalization of the higher-order theory for cylindrical functionally graded materials

with dynamic impact loading capability completely fulfills the objectives of the Grant NAG3-2411.

As demonstrated in the above section, full benefit of the developed theoretical framework will be

realized upon development of a general computer code enabling simulation of two-dimensional wave

propagation in bi-directionally graded cylindrical structural components in the r - 0 plane.
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8. APPENDIX

Thenonzerostraincoefficients_ij(t,,n,n)in theLegendrepolynomialexpansionof thestrain fieldin
subcell(al77) of cell (p,q, s) are given in terms of the displacement field microvariabIes by

e(_#_) _ W:(-#'_)
rr(O,O,O) -- 1(100)

rr(1,0,0) = -T- wl (200)

e(_#-r) T_(c_#'Y) I uz(_#.y)
88(0,0,0) : -- 2(010) -I- R(_-#7 ) _ 1(000)

oo(1,o,o) - 2v/-_R(_#-t) - 1(lOO5

e(_#_) h# ur(_#;) x/_h# W(_#-y)
oo(O,l,O) - 2v/_R(_#_) "' 1(olo) -F _ 2(02o)

e(,_#._) d2 uz(_#._)
00(2,o,o) -- 4x/_R(_#._) "' 1(20o)

e(_#_) h_ uz(_#_ )

80(0,2,0) - 4x/_R(_#;) "' 1(o2o)

e(,_#._) 12 u;(_#.y5
00(0,0,2) -- 4v/_R(_#_) "" 1(0025

e(_#'I) = W(_#'y)
_(o,o,o) 3(oo_)

e(a#-y) I [W(a#._) uz(,_p-y)]
rS(0,0,0) = _t 2(100) -4- ,,,' l(010)J

e(_#_) v_d_. (_#_)
rO(1,O,O)- 4 14/2 (200)

v0(0,1,0) -- T 1(020)

1 uz(_#._)
2R(_#-_) '" 2(0005

d_ uz(_#_)

4v/-_R(_#_) "" 2(lO0)

h# uz(,_#._)
" 2(010)4v/-_R(_#_)

e(a#_) d2_ W(,_#-_)
rO(2,0,O) -- 8v/_R(afl2) -- 2(200)

,-0(o,2,o)= 8vr__'_#-_)'" 2(02o)

.,(,_#._) l?
"rO(O,O,2) ---" 8V/-_R(a#7) -- 2(002)

_(o,o,_) = _Wi(oo2)

e(,_#._) v_I.y .(_#.y)
a(o,o,a) = _W_(oo2)
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The nonzerothermalstresscoefficientswT(_z_) in the Legendrepolynomialsexpansionof the_j(t,m,._)
thermal stressin subcell(aflT) of ceil (p,q, s) arc given in terms of of the temperature field mi-

crovariables T_l:_:)_) by

TT(aZT) -_- p(afl_')rp(_flT)
,-,-(o,o,o) lrr -'-(ooo)

rr(1,0,0) rr _ (100)

TT(a_37) = F(a_7) hz T(_v)
_(o,l,o) _ 2x/_ (olo)

2

rr(2,0,0) --rr 4---'_ _ (200)

2

TT(_Z_) _(_ZV) h_ _r(_ )
_(o,e,o) = -,-," 4v_'(o2o)

2
._T(_-y) = r'(_v) l_ _r('_)
"_(0,0,2) --._ 4V_(0o2)

,,.T(aflT) TT( _ZT )with similar expressions for -ee(t,m,_) and zz(l,m,n)"

7
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Figure 1. A geometric model for the higher-order theory for cylindrical functionally graded mate-

rials/structures (HOTCFGM-2D).
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Figure 2. Stress at the center of the llth layer due to a unit step stress applied at the center of

the first (top) layer: exact ray theory predictions from Ref. [23] (top figure); higher-order theory

predcitions (bottom figure). The subscript 1 in _r] indicates steel layer (layer 1) in the repeating

unit cell sequence of the layered half-plane.
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Figure 3. Stress at the center of the 12th layer due to a unit step stress applied at the center of

the first (top) layer: exact ray theory predictions from Ref. [23] (top figure); higher-order theory

predcitions (bottom figure). The subscript 1 in _2 indicates PMMA layer (layer 2) in the repeating

unit cell sequence of the layered half-plane.
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